Local AI has reached critical mass. The best open models now rival GPT-4 for coding tasks. Zero monthly fees. Complete data sovereignty. The decision framework is simple: deploy now or lose competitive advantage.
The numbers that matter
Performance reality check:
- Local latency: Sub-100ms responses vs 500ms+ cloud latency
- Cost structure: One-time hardware investment vs $100-300/month subscriptions
- Privacy guarantee: 100% air-gapped capability
- Context windows: Up to 128K tokens on consumer hardware
- Language support: 80-600+ languages depending on model
Continue’s validated stack:
- Chat: Qwen2.5-Coder 7B, DeepSeek-R1 32B, Llama3.1 8B
- Autocomplete: Qwen2.5-Coder 1.5B, StarCoder2 3B
- Advanced reasoning: DeepSeek-R1 32B with tool support
- Embeddings: Nomic-embed-text for codebase indexing
The elite five: Continue recommended models
1. Qwen2.5-Coder: Continue’s top pick
Why Continue recommends it:
- Autocomplete champion: 1.5B model specifically recommended by Continue
- Chat powerhouse: 7B variant excels at code generation
- Context window: 128K tokens
- Languages: 80+ supported
- Inference: 60-80 tokens/second on RTX 4070
Deployment matrix:
- Sizes: 0.5B, 1.5B, 3B, 7B, 14B, 32B
- Memory: 4GB (1.5B), 8GB (7B), 16GB (14B)
- Continue config: Pre-validated model blocks available
Production configuration:
models:
- name: Qwen 2.5 Coder Chat
provider: ollama
model: qwen2.5-coder:7b
roles:
- chat
- edit
- name: Qwen 2.5 Coder Autocomplete
provider: ollama
model: qwen2.5-coder:1.5b
roles:
- autocomplete
2. DeepSeek-R1: Advanced reasoning specialist
Continue integration:
- Native tool support in Continue
- Thinking mode for complex problems
- Context: 128K tokens
- Best for: System design, debugging, refactoring
Performance profile:
- Advanced chain-of-thought reasoning
- 32B model runs on 32GB RAM
- Controllable reasoning transparency
Continue configuration:
models:
- name: DeepSeek R1 32B
provider: ollama
model: deepseek-r1:32b
roles:
- chat
- edit
capabilities:
- tool_use
3. DeepSeek-Coder V2: Mathematical prowess
Technical strengths:
- Superior mathematical reasoning
- Languages: 338 supported
- Architecture: Mixture-of-Experts efficiency
- Context window: 128K tokens
Continue recommendation:
- 16B variant for balanced performance
- Superior for algorithmic challenges
- Excellent debugging capabilities
Deployment specs:
- Sizes: 6.7B, 16B, 33B
- Memory: 8GB (6.7B), 16GB (16B)
- Quantization: Q4_K_M recommended
4. CodeLlama: Production reliability
Why teams choose it:
- Battle-tested in thousands of organizations
- Consistent, predictable outputs
- Meta’s ongoing support commitment
- Specialized Python variant available
Model variants:
- Base: General programming
- Python: Web development specialist
- Instruct: Following complex instructions
- Sizes: 7B, 13B, 34B, 70B
Continue setup:
models:
- name: CodeLlama 13B
provider: ollama
model: codellama:13b
roles:
- chat
- edit
5. StarCoder2: Lightweight efficiency
Continue’s autocomplete alternative:
- 3B model recommended for autocomplete
- 600+ programming languages
- Exceptional efficiency for size
- Transparent training data
Deployment advantages:
- Minimal memory: 4GB for 3B model
- Fast inference: 100+ tokens/second
- COBOL and legacy language support
Hardware reality: what actually works
Minimum viable setup (8-16GB RAM)
Continue-recommended models:
- Qwen2.5-Coder 1.5B (autocomplete)
- Llama3.1 8B or Mistral 7B (chat)
- Performance: 80-120 tokens/second autocomplete
Professional developer (32GB RAM + RTX 4070)
Optimal configuration:
- Qwen2.5-Coder 7B (primary)
- Qwen2.5-Coder 1.5B (autocomplete)
- DeepSeek-Coder 6.7B (alternative)
- Performance: 45-80 tokens/second
Team deployment (64GB+ RAM + RTX 4090)
Maximum capability:
- DeepSeek-R1 32B (reasoning)
- CodeLlama 34B (reliability)
- Multiple model switching
- Concurrent user support: 5-10 developers
Deployment: Continue’s proven path
Step 1: Install Ollama (2 minutes)
# macOS/Linux
curl -fsSL https://ollama.com/install.sh | sh
# Pull Continue's recommended models
ollama pull qwen2.5-coder:7b
ollama pull qwen2.5-coder:1.5b
ollama pull nomic-embed-text
Step 2: Configure Continue (3 minutes)
{
"models": [
{
"name": "Qwen 2.5 Coder 7B",
"provider": "ollama",
"model": "qwen2.5-coder:7b",
"roles": ["chat", "edit"]
}
],
"autocompleteModel": {
"name": "Qwen 2.5 Coder 1.5B",
"provider": "ollama",
"model": "qwen2.5-coder:1.5b",
"roles": ["autocomplete"]
},
"embeddingsProvider": {
"provider": "ollama",
"model": "nomic-embed-text"
}
}
Step 3: Performance optimization
# Enable optimizations
export OLLAMA_NUM_PARALLEL=4
export OLLAMA_FLASH_ATTENTION=1
export OLLAMA_MAX_LOADED_MODELS=2
Model selection matrix
By use case
Code generation:
- Primary: Qwen2.5-Coder 7B
- Alternative: CodeLlama 13B
- Heavy: DeepSeek-Coder 16B
Autocomplete:
- Fast: Qwen2.5-Coder 1.5B
- Alternative: StarCoder2 3B
- Thinking models: Disable thinking mode
Complex reasoning:
- DeepSeek-R1 32B (with tool support)
- Llama3.1 8B (with tool support)
- DeepSeek-Coder 33B (mathematical)
By hardware constraints
8GB VRAM:
- Qwen2.5-Coder 1.5B
- Mistral 7B
- Llama3.1 8B (Q4_K_M)
16GB VRAM:
- Qwen2.5-Coder 7B
- DeepSeek-Coder 16B
- CodeLlama 13B
24GB+ VRAM:
- DeepSeek-R1 32B
- CodeLlama 34B
- Multiple models loaded
Performance tuning playbook
Quantization strategy
Continue’s recommendations:
- Q4_K_M: Best balance (default)
- Q5_K_M: Quality priority
- Q3_K_M: Memory constrained
- Q8_0: Maximum quality
Context optimization
Proven configurations:
- Autocomplete: 2K-4K tokens (speed)
- Chat: 16K-32K tokens (balance)
- Analysis: 64K-128K tokens (depth)
Temperature settings
requestOptions:
temperature: 0.2 # Code generation
temperature: 0.5 # Exploration
temperature: 0.0 # Deterministic output
ROI calculation
Cloud services (annual)
- GitHub Copilot: $1,200/developer
- Claude Pro: $2,400/developer
- GPT-4 API: $1,800-3,600/developer
- Total: $1,200-3,600/developer/year
Local deployment (one-time)
- Hardware: $1,500-3,000
- Electricity: $120/year
- Breakeven: 6-12 months
- 3-year savings: $3,600-10,800/developer
Productivity gains
- Zero latency: 20-30% speed improvement
- Unlimited usage: No throttling anxiety
- Custom models: Domain-specific optimization
- Privacy: Enable work on sensitive code
Team deployment strategies
Startup configuration
Models:
- Qwen2.5-Coder 7B (primary)
- Qwen2.5-Coder 1.5B (autocomplete)
Hardware:
- Single RTX 4070, 32GB RAM
- Supports 2-4 developers
- Cost: $2,000 total investment
Enterprise deployment
Models:
- CodeLlama 34B (production)
- DeepSeek-R1 32B (reasoning)
- Qwen2.5-Coder suite (all sizes)
Infrastructure:
- Kubernetes cluster
- Multiple RTX 4090s
- Load balancing
- Model routing by task type
Individual developer
Quick start:
- Qwen2.5-Coder 7B only
- RTX 4060, 16GB RAM
- 10-minute setup
- Immediate productivity boost
Integration ecosystem
IDE support (Continue validated)
Tier 1:
- Visual Studio Code
- JetBrains IDEs (all)
- Cursor
- Neovim (with plugins)
Web interfaces:
- Open WebUI (team deployments)
- Continue Chat UI
- Custom API endpoints
Advanced integrations
- LangChain (RAG pipelines)
- LlamaIndex (document processing)
- Docker/Kubernetes (scaling)
- CI/CD pipelines (automated testing)
Common pitfalls and solutions
”Model loads slowly”
- Use OLLAMA_MAX_LOADED_MODELS=1
- Implement model switching logic
- Pre-load frequently used models
”Autocomplete feels laggy”
- Switch to Qwen2.5-Coder 1.5B
- Reduce context to 2K tokens
- Enable Flash Attention
”Running out of memory”
- Use aggressive quantization (Q3_K_M)
- Reduce context window
- Implement model offloading
The competitive reality
Market signals:
- Continue: 500K+ active users
- Ollama: 100K+ GitHub stars
- Enterprise adoption: 200% YoY growth
- Microsoft/Google: Investing in local AI
Your decision framework:
- Competitors using local AI have zero API costs
- They own their code and AI interactions
- They customize models to their domain
- They work offline with zero friction
The gap widens daily. Organizations clinging to cloud-only AI face mounting costs, privacy risks, and competitive disadvantage. Local deployment isn’t experimental—it’s the new standard.
Action plan: next 24 hours
Hour 1:
- Install Ollama
- Pull Qwen2.5-Coder 7B and 1.5B
- Configure Continue
Hour 2-4:
- Test on real codebase
- Benchmark against current solution
- Document performance metrics
Hour 5-24:
- Fine-tune configuration
- Share with team
- Calculate specific ROI
Week 1:
- Pilot with 2-3 developers
- Gather feedback
- Optimize for workflow
Resources
Essential links:
The binary choice: Pay increasing cloud costs with privacy risks, or deploy local models with superior control, zero recurring costs, and unlimited usage.
Every day without local AI is a day of competitive disadvantage.